Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[(E)-4,4'-(ethane-1,2-diyl)dipyridinium [[bis(thiocyanato-kN)-ferrate(II)]-di- μ-thiocyanato$\left.\left.\kappa^{2} N: S ; \kappa^{2} S: N\right]\right]$

Susanne Wöhlert,* Inke Jess and Christian Näther

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-EythStrasse 2, 24118 Kiel, Germany
Correspondence e-mail: swoehlert@ac.uni-kiel.de

Received 27 September 2011; accepted 28 September 2011

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.026 ; \omega R$ factor $=0.063$; data-to-parameter ratio $=16.9$.

In the crystal structure of the title compound, $\left\{\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2}\right)\right.$ $\left.\left[\mathrm{Fe}(\mathrm{NCS})_{4}\right]\right\}_{n}$, the iron(II) cation is coordinated by four N bonded and two S-bonded thiocyanate anions in a distorted octahedral coordination mode. The asymmetric unit consists of half an iron(II) cation and half a protonated (E)-4, 4^{\prime} -(ethane-1,2-diyl)dipyridinium dication, each located on a centre of inversion. In addition, there are two thiocyanate anions in general positions. The crystal structure consists of $\mathrm{Fe}-(\mathrm{NCS})_{2}-\mathrm{Fe}$ chains in which each iron(II) cation is additionally coordinated by two terminal N-bonded thiocyanate anions. Non-coordinating dipyridinium dications are present between the thiocyanatoferrate(II) chains and are connected to the anions via $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen-bond interactions.

Related literature

For coordination polymers based on transition metal thio- and selenocyanates, see: Wöhlert et al. (2011); Boeckmann et al. (2010). For a similar structure, see: Wöhlert et al. (2010).

Experimental

Crystal data

$\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2}\right)\left[\mathrm{Fe}(\mathrm{NCS})_{4}\right]$

$$
b=9.0957 \text { (6) } \AA
$$

$M_{r}=474.42$
$c=10.9259$ (7) \AA
$\alpha=105.586(5)^{\circ}$
$\beta=103.633$ (5) ${ }^{\circ}$
$\gamma=101.383(5)^{\circ}$
$V=507.65(5) \AA^{3}$
$Z=1$
Mo $K \alpha$ radiation

Data collection
Stoe IPDS-2 diffractometer Absorption correction: numerical (X-SHAPE and X-RED32; Stoe \& Cie, 2008)
$T_{\text {min }}=0.806, T_{\text {max }}=0.899$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.063$
$S=1.03$
2101 reflections
$\mu=1.17 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.19 \times 0.15 \times 0.09 \mathrm{~mm}$

7638 measured reflections
2101 independent reflections
1838 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Fe} 1-\mathrm{N} 1$	$2.1011(15)$	$\mathrm{Fe} 1-\mathrm{S}^{\mathrm{i}}$	$2.6729(5)$
$\mathrm{Fe} 1-\mathrm{N} 2$	$2.1376(14)$		
$\mathrm{N} 1^{\mathrm{ii}}-\mathrm{Fe} 1-\mathrm{N} 1$	180	$\mathrm{~N} 2^{\mathrm{ii}}-\mathrm{Fe} 1-\mathrm{S} 2^{\mathrm{iii}}$	$86.73(4)$
$\mathrm{N} 1^{\mathrm{ii}}-\mathrm{Fe} 1-\mathrm{N} 2$	$88.06(6)$	$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{S} 2^{\mathrm{i}}$	$86.79(4)$
$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{N} 2$	$91.94(6)$		

Symmetry codes: (i) $x+1, y, z$; (ii) $-x+1,-y+1,-z+1$; (iii) $-x,-y+1,-z+1$.

Table 2
Hydrogen-bond geometry (\AA, ${ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 10-\mathrm{H} 10 A \cdots \mathrm{~N} 1$	0.86	2.34	$3.029(2)$	137
$\mathrm{~N} 10-\mathrm{H} 10 A \cdots \mathrm{~S} 2^{\mathrm{i}}$	0.86	2.73	$3.4369(15)$	141

Symmetry code: (i) $x+1, y, z$.

Data collection: X-AREA (Stoe \& Cie, 2008); cell refinement: X $A R E A$; data reduction: X - $A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: XCIF in SHELXTL.

We gratefully acknowledge financial support by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (Project 720/3-1). We thank Professor Dr Wolfgang Bensch for the opportunity to use his experimental facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5657).

References

Boeckmann, J., Wriedt, M. \& Näther, C. (2010). Eur. J. Inorg. Chem. 12, 18201828.

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stoe \& Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Wöhlert, S., Boeckmann, J., Wriedt, M. \& Näther, C. (2011). Angew. Chem. Int. Ed. 50, 6920-6923.
Wöhlert, S., Wriedt, M., Jess, I. \& Näther, C. (2010). Acta Cryst. E66, m1256.

supplementary materials

catena-Poly $[(E)-4,4$ '-(ethane-1,2-diyl)dipyridinium $\quad[[b i s(t h i o c y a n a t o-\kappa N) f e r r a t e(I I)]-d i-\mu$-thiocy-anato- $\left.\left.\kappa^{2} N: S ; \kappa^{2} S: N\right]\right]$

S. Wöhlert, I. Jess and C. Näther

Comment

In our current work, we are interested in the structure and properties of new coordination polymers based on transition metal thio- and selenocyanates (Wöhlert et al., 2011; Boeckmann, Wriedt \& Näther, 2010). In our ongoing investigation in this field we have reacted iron(II) sulfate heptahydrate, potassium thiocyanate and E-1,2-bis(4-pyridyl)-ethane in water. In this reaction red single crystals of the title compound were obtained, which were identified by single crystal X-ray diffraction.

The title compound of composition $\left[\mathrm{Fe}(\mathrm{NCS})_{4}\right]_{\mathrm{n}}$-E-1,2-bis(4-pyridinium)-ethane (Fig. 1) represents an 1-D coordination polymer, in which each iron(II) cation is connected by four $\mu-1,3$ bridging thiocyanato anions into chains that elongate in the direction of the crystallographic a axis (Fig. 2). Between these chains noncoordinating protonated E-1,2-bis(4-pyridinium)-ethane ligands are found, that are linked to the anions by weak hydrogen bonding interactions (Table 1). The $\mathrm{FeN}_{4} \mathrm{~S}_{2}$ octahedron is slightly distorted with two long $\mathrm{Fe}-\mathrm{SCN}$ distances of 2.6729 (5) \AA and short $\mathrm{Fe}-\mathrm{NCS}$ distances of 2.1011 (15) and 2.1376 (14) \AA. The angles arround the metal cations range from 86.73 (5) to 93.27 (4) and 180° (Tab. 1). The shortest intramolecular $\mathrm{Fe} \cdots \mathrm{Fe}$ distance amounts to 5.6818 (3) \AA and the shortest intermolecular $\mathrm{Fe} \cdots \mathrm{Fe}$ distance amounts to 9.0957 (6) \AA. It must be noted that the structure is very similar but not isotypic to that of iron(II) thiocyanate and E-1,2-bis(4-pyridinium)-ethylene reported recently (Wöhlert et al., 2010).

Experimental

$\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ and 1,2-bis(4-pyridyl)-ethane were obtained from Sigma Aldrich. KNCS are obtained from Alfa Aesar. 0.6 $\mathrm{mmol}(168.0 \mathrm{mg}) \mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}, 1.2 \mathrm{mmol}(117.7 \mathrm{mg}) \mathrm{KNCS}$ and $0.15 \mathrm{mmol}(27.2 \mathrm{mg})$ 1,2-bis(4-pyridyl)-ethane were reacted with $1 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ in closed test-tube at $120^{\circ} \mathrm{C}$ for three days. On cooling red block-shaped single crystals of the title compound were obtained in a mixture with a second crystalline phase that was not yet identified.

Refinement

All H atoms were located in difference map but were positioned with idealized geometry and were refined using a riding model with $U_{\text {eq }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$.

Figures

Fig. 1. Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 30% probability level. Symmetry code: $i=-x+1,-y+1,-z+1 ; i i=-x,-y+1,-z$ $+1 ;$ iii $=x+1, y, z ;$ iv $=-x,-y+2,-z$.

supplementary materials

Fig. 2. : Crystal structure of the title compound viewed along the crystallographic b axis.
catena-Poly $\left[(E)-4,4^{1}\right.$-(ethane-1,2-diyl)dipyridinium [[bis(thiocyanato-к N)ferrate(II)]-di- μ-thiocyanato$\left.\left.\kappa^{2} N: S ; \kappa^{2} S: N\right]\right]$

Crystal data

$\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2}\right)\left[\mathrm{Fe}(\mathrm{NCS})_{4}\right]$
$Z=1$
$M_{r}=474.42$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=5.6818$ (3) \AA
$b=9.0957$ (6) \AA
$c=10.9259(7) \AA$
$\alpha=105.586(5)^{\circ}$
$\beta=103.633(5)^{\circ}$
$\gamma=101.383(5)^{\circ}$
$V=507.65(5) \AA^{3}$
$F(000)=242$
$D_{\mathrm{x}}=1.552 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 7638 reflections
$\theta=2.0-26.5^{\circ}$
$\mu=1.17 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, red
$0.19 \times 0.15 \times 0.09 \mathrm{~mm}$

Data collection

Stoe IPDS-2
diffractometer
Radiation source: fine-focus sealed tube
graphite
ω scans
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe \& Cie, 2008)
$T_{\text {min }}=0.806, T_{\text {max }}=0.899$
7638 measured reflections
2101 independent reflections
1838 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=26.5^{\circ}, \theta_{\text {min }}=2.0^{\circ}$
$h=-7 \rightarrow 6$
$k=-11 \rightarrow 11$
$l=-13 \rightarrow 13$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.063$
$S=1.03$

2101 reflections
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0393 P)^{2}+0.0464 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$

124 parameters

0 restraints

$$
\begin{aligned}
& \Delta \rho_{\max }=0.26 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.40 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Fe1	0.5000	0.5000	0.5000	$0.02833(10)$
N1	$0.4723(3)$	$0.45516(18)$	$0.29744(15)$	$0.0398(3)$
C1	$0.5464(3)$	$0.40682(18)$	$0.20845(16)$	$0.0311(3)$
S1	$0.64953(10)$	$0.33771(7)$	$0.08533(5)$	$0.04980(14)$
N2	$0.2339(3)$	$0.63622(17)$	$0.48892(15)$	$0.0356(3)$
C2	$0.0753(3)$	$0.69028(18)$	$0.51257(15)$	$0.0283(3)$
S2	$-0.14718(8)$	$0.76903(5)$	$0.54918(5)$	$0.03592(12)$
N10	$0.4056(3)$	$0.77059(17)$	$0.27628(15)$	$0.0384(3)$
H10A	0.4891	0.7200	0.3178	0.046^{*}
C10	$0.5213(3)$	$0.9178(2)$	$0.28629(19)$	$0.0413(4)$
H10	0.6894	0.9642	0.3374	0.050^{*}
C11	$0.3919(4)$	$1.0005(2)$	$0.22104(18)$	$0.0399(4)$
H11	0.4724	1.1029	0.2273	0.048^{*}
C12	$0.1399(3)$	$0.9314(2)$	$0.14537(16)$	$0.0333(4)$
C13	$0.0289(3)$	$0.7782(2)$	$0.13838(18)$	$0.0390(4)$
H13	-0.1393	0.7289	0.0886	0.047^{*}
C14	$0.1652(4)$	$0.6990(2)$	$0.20418(19)$	$0.0410(4)$
H14	0.0905	0.5958	0.1986	0.049^{*}
C15	$-0.0056(4)$	$1.0190(2)$	$0.07142(17)$	$0.0416(4)$
H15A	0.0637	1.1324	0.1177	0.050^{*}
H15B	-0.1800	0.9896	0.0701	0.050^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	$0.02747(17)$	$0.03565(18)$	$0.03103(17)$	$0.01680(13)$	$0.01363(13)$	$0.01564(13)$
N1	$0.0459(9)$	$0.0434(8)$	$0.0355(8)$	$0.0179(7)$	$0.0150(7)$	$0.0153(6)$
C1	$0.0323(8)$	$0.0272(7)$	$0.0324(8)$	$0.0078(6)$	$0.0059(7)$	$0.0116(6)$
S1	$0.0492(3)$	$0.0540(3)$	$0.0424(3)$	$0.0118(2)$	$0.0221(2)$	$0.0048(2)$
N2	$0.0292(7)$	$0.0391(7)$	$0.0465(8)$	$0.0149(6)$	$0.0158(6)$	$0.0192(6)$

C2	$0.0246(7)$	$0.0288(7)$	$0.0327(8)$	$0.0073(6)$	$0.0078(6)$	$0.0130(6)$
S2	$0.0281(2)$	$0.0341(2)$	$0.0472(2)$	$0.01455(16)$	$0.01351(18)$	$0.01003(18)$
N10	$0.0410(8)$	$0.0391(8)$	$0.0416(8)$	$0.0172(6)$	$0.0088(7)$	$0.0226(6)$
C10	$0.0339(9)$	$0.0418(9)$	$0.0442(10)$	$0.0083(7)$	$0.0028(8)$	$0.0173(8)$
C11	$0.0460(10)$	$0.0306(8)$	$0.0422(9)$	$0.0093(7)$	$0.0082(8)$	$0.0161(7)$
C12	$0.0414(9)$	$0.0376(8)$	$0.0270(7)$	$0.0192(7)$	$0.0115(7)$	$0.0135(7)$
C13	$0.0336(9)$	$0.0424(9)$	$0.0391(9)$	$0.0082(7)$	$0.0061(7)$	$0.0165(8)$
C14	$0.0449(10)$	$0.0343(9)$	$0.0450(10)$	$0.0072(7)$	$0.0115(8)$	$0.0198(8)$
C15	$0.0517(11)$	$0.0469(10)$	$0.0369(9)$	$0.0292(9)$	$0.0128(8)$	$0.0204(8)$

Geometric parameters ($\AA,{ }^{\circ}$)

Fel-N1 ${ }^{\text {i }}$	2.1011 (15)
Fel-N1	2.1011 (15)
Fel-N2 ${ }^{\text {i }}$	2.1376 (14)
Fe1-N2	2.1376 (14)
Fel-S2 ${ }^{\text {ii }}$	2.6729 (5)
Fel-S2 ${ }^{\text {iii }}$	2.6729 (5)
N1-C1	1.163 (2)
C1-S1	1.6157 (18)
N2-C2	1.156 (2)
C2-S2	1.6472 (16)
$\mathrm{S} 2-\mathrm{Fe} 1^{\text {iv }}$	2.6729 (5)
N10-C14	1.333 (2)
N10-C10	1.333 (2)
$\mathrm{N} 1{ }^{\text {i }}$ - $\mathrm{Fe} 1-\mathrm{N} 1$	180.000 (1)
$\mathrm{N} 1{ }^{\text {i }}$-Fe1- $2^{\text {i }}$	91.94 (6)
N1-Fe1-N2 ${ }^{\text {i }}$	88.06 (6)
$\mathrm{N} 1{ }^{\text {i }}$ - $\mathrm{Fe} 1-\mathrm{N} 2$	88.06 (6)
N1-Fe1-N2	91.94 (6)
$\mathrm{N} 2{ }^{\text {i }}$ - $\mathrm{Fe} 1-\mathrm{N} 2$	180.000 (1)
N1 ${ }^{\text {i }}$-Fe1-S $2^{\text {ii }}$	86.79 (4)
N1—Fe1—S2 ${ }^{\text {ii }}$	93.21 (4)
$\mathrm{N} 2{ }^{\text {i }}$-Fe1—S2 ${ }^{\text {ii }}$	86.73 (4)
N2-Fe1-S2 ${ }^{\text {ii }}$	93.27 (4)
$\mathrm{N} 1{ }^{\text {i }}$-Fe1—S2 ${ }^{\text {iii }}$	93.21 (4)
N1—Fe1-S2 ${ }^{\text {iii }}$	86.79 (4)
$\mathrm{N} 2{ }^{\text {i }}$-Fe1—S2 ${ }^{\text {iii }}$	93.27 (4)
N2-Fe1-S2 ${ }^{\text {iii }}$	86.73 (4)
S2 $2^{\text {ii }}$-Fe1—S2 ${ }^{\text {iii }}$	180.000 (13)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Fe} 1$	149.29 (13)
N1-C1-S1	179.28 (15)
C2-N2-Fe1	158.76 (13)
N2-C2-S2	178.92 (16)

$\mathrm{N} 10-\mathrm{H} 10 \mathrm{~A}$	0.8600
$\mathrm{C} 10-\mathrm{C} 11$	$1.369(2)$
$\mathrm{C} 10-\mathrm{H} 10$	0.9300
$\mathrm{C} 11-\mathrm{C} 12$	$1.391(3)$
$\mathrm{C} 11-\mathrm{H} 11$	0.9300
$\mathrm{C} 12-\mathrm{C} 13$	$1.385(2)$
$\mathrm{C} 12-\mathrm{C} 15$	$1.504(2)$
$\mathrm{C} 13-\mathrm{C} 14$	$1.368(3)$
$\mathrm{C} 13-\mathrm{H} 13$	0.9300
$\mathrm{C} 14-\mathrm{H} 14$	0.9300
$\mathrm{C} 15-\mathrm{C} 15 \mathrm{v}$	$1.525(4)$
$\mathrm{C} 15-\mathrm{H} 15 \mathrm{~A}$	0.9700
$\mathrm{C} 15-\mathrm{H} 15 \mathrm{~B}$	0.9700
$\mathrm{C} 10-\mathrm{N} 10-\mathrm{H} 10 \mathrm{~A}$	118.8
$\mathrm{~N} 10-\mathrm{C} 10-\mathrm{C} 11$	$119.77(16)$
$\mathrm{N} 10-\mathrm{C} 10-\mathrm{H} 10$	120.1
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10$	120.1
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$120.07(16)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{H} 11$	120.0
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{H} 11$	120.0
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 11$	$117.78(15)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 15$	$121.12(16)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 15$	$121.09(16)$
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 12$	$120.42(16)$
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{H} 13$	119.8
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 13$	119.8
$\mathrm{~N} 10-\mathrm{C} 14-\mathrm{C} 13$	$119.63(16)$
$\mathrm{N} 10-\mathrm{C} 14-\mathrm{H} 14$	120.2
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{H} 14$	120.2
$\mathrm{C} 12-\mathrm{C} 15-\mathrm{C} 15^{\mathrm{v}}$	$1.35(18)$
$\mathrm{C} 12-\mathrm{C} 15-\mathrm{H} 15 \mathrm{~A}$	C
$\mathrm{C} 15-\mathrm{C} 15-\mathrm{H} 15 \mathrm{~A}$	

sup-4

supplementary materials

$\mathrm{C} 2 — \mathrm{~S} 2-\mathrm{Fe}^{\text {iv }}$	$98.29(6)$	$\mathrm{C} 12-\mathrm{C} 15-\mathrm{H} 15 \mathrm{~B}$	109.4
$\mathrm{C} 14-\mathrm{N} 10-\mathrm{C} 10$	$122.34(15)$	$\mathrm{C} 15^{\mathrm{v}}-\mathrm{C} 15-\mathrm{H} 15 \mathrm{~B}$	109.4
$\mathrm{C} 14 — \mathrm{~N} 10-\mathrm{H} 10 \mathrm{~A}$	118.8	$\mathrm{H} 15 \mathrm{~A}-\mathrm{C} 15-\mathrm{H} 15 \mathrm{~B}$	108.0
Symmetry codes: (i) $-x+1,-y+1,-z+1 ;$ (ii) $-x,-y+1,-z+1 ;$ (iii) $x+1, y, z ;$ (iv) $x-1, y, z ;$ (v) $-x,-y+2,-z$.			

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 10 — \mathrm{H} 10 \mathrm{~A} \cdots \mathrm{~N} 1$	0.86	2.34	$3.029(2)$	137.
$\mathrm{~N} 10 — \mathrm{H} 10 \mathrm{~A} \cdots \mathrm{~S} 2{ }^{\mathrm{iii}}$	0.86	2.73	$3.4369(15)$	141.

Symmetry codes: (iii) $x+1, y, z$.
supplementary materials

Fig. 1

Fig. 2

